Quasielastic neutron scattering study of hydrogen motion in C 14 - and C 15 -type $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys.: Condens. Matter 111489
(http://iopscience.iop.org/0953-8984/11/6/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.214
The article was downloaded on 15/05/2010 at 06:58

Please note that terms and conditions apply.

Quasielastic neutron scattering study of hydrogen motion in C14- and C15-type $\mathbf{Z r C r}_{2} \mathbf{H}_{x}$

A V Skripov \dagger, M Pionke \ddagger, O Randl§§ and R Hempelmann\|
\dagger Institute of Metal Physics, Urals Branch of the Academy of Sciences, Ekaterinburg 620219, Russia
\ddagger Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
§ Institut Laue-Langevin, F-38042 Grenoble, France
|| Institut für Physikalische Chemie, Universität des Saarlandes, D-66041 Saarbrücken, Germany

Received 23 October 1998

Abstract

In order to clarify the mechanisms of hydrogen diffusion in the cubic (C15) and hexagonal (C14) modifications of Laves phase ZrCr_{2}, we have performed high-resolution quasielastic neutron scattering measurements on $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ over the temperature range $10-340 \mathrm{~K}$. It is found that in both systems the diffusive motion of hydrogen can be described in terms of two jump processes: the fast localized H motion within the hexagons formed by interstitial $\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ sites and the slower hopping from one hexagon to the other. The experimental results are analysed to determine the hydrogen hopping rates and the tracer diffusion coefficients as functions of temperature. The motional parameters of hydrogen in the C15- and C14-type samples are found to be close to each other. Comparison of the motional parameters of hydrogen in $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ and in the related C 15 -type $\mathrm{TaV}_{2} \mathrm{H}_{x}$ shows that the localized H motion in ZrCr_{2} is slower, whereas the long-range H diffusion is much faster than in TaV_{2}. These features are consistent with the difference between intersite distances in the hydrogen sublattices of $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ and $\mathrm{TaV}_{2} \mathrm{H}_{x}$.

1. Introduction

The Laves-phase intermetallic compound ZrCr_{2} may exist in the form of either of two structural modifications (the hexagonal C14 or the cubic C15), both of which absorb large amounts of hydrogen. Nuclear magnetic resonance (NMR) experiments [1-3] have revealed the extremely high hydrogen mobility down to low temperatures in both C14- and C15-type $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ with $x \leqslant 0.5$. In particular, the long-range hydrogen diffusivity D in these compounds at 130 K appears to be higher than in any other intermetallic-hydrogen system. However, the mechanisms of H motion in $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ are not yet clear. The temperature dependence of D in both C14- and C15-type $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ measured by the pulsed-field-gradient NMR technique [3] shows a pronounced deviation from the Arrhenius behaviour below 200 K. Furthermore, the proton spin-relaxation results for $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ [2] are consistent with a coexistence of two frequency scales of H hopping. Similar coexistence of two frequency scales of H hopping has been reported for a number of other Laves phase hydrides including $\operatorname{TiCr}_{2} \mathrm{H}_{x}$ [4], $\mathrm{TaV}_{2} \mathrm{H}_{x}$ [5], $\mathrm{HfV}_{2} \mathrm{H}_{x}$ and $\mathrm{ZrV}_{2} \mathrm{H}_{x}$ [6]. Recent quasielastic neutron scattering (QENS) measurements on C15-type $\mathrm{TaV}_{2} \mathrm{H}_{x}[7-9]$ have shown that the diffusive motion of hydrogen in this system can

- Present address: Michelin SA, Place des Carmes, F-63040 Clermont-Ferrand, France.
be described in terms of two jump processes: the fast localized H motion within hexagons formed by interstitial $\mathrm{g}\left(\mathrm{Ta}_{2} \mathrm{~V}_{2}\right)$ sites and the slower hopping from one hexagon to the other.

According to the neutron diffraction data [10, 11], hydrogen atoms in C15-type $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ with $x \leqslant 3.5$ also occupy only tetrahedral $\mathrm{g}\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ sites. Therefore one can expect the microscopic picture of hydrogen motion in $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ with low x to be qualitatively the same as that for $\mathrm{TaV}_{2} \mathrm{H}_{x}$. For $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ no published information on positions occupied by H atoms is available. However, on the basis of the general trends of site occupancy in hydrides of intermetallics [12,13] and the neutron diffraction data for the related system C14$\mathrm{ZrMn}_{2} \mathrm{D}_{3}$ [14], we may expect hydrogen in $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ to occupy the tetrahedral sites with $\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ coordination, at least at low x. In contrast to the C 15 structure, where all $\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ sites are equivalent, in the C 14 structure there are four inequivalent types of $\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ site $\left(\mathrm{h}_{1}\right.$, h_{2}, k and l$)$. The spatial arrangement of $\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ sites in the C 14 lattice differs from that in the C 15 lattice. The aims of the present work are to clarify the microscopic picture of H hopping in both C14- and C15-type ZrCr_{2} and to compare the motional parameters of hydrogen in C14- and C15-type compounds of the same composition using incoherent quasielastic neutron scattering. We have performed high-resolution QENS measurements for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ over the temperature range $10-340 \mathrm{~K}$. These measurements have confirmed the existence of a fast localized H motion (similar to that found for $\mathrm{TaV}_{2} \mathrm{H}_{x}$) in both C14- and C15-type $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$. The results are analysed to determine the tracer diffusion coefficient, the hopping rates and the mean jump length of hydrogen atoms in ZrCr_{2}.

2. Experimental details

The preparation of $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ samples was analogous to that described in [1, 2]. X-ray diffraction analysis has shown that both $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ are single-phase solid solutions with the lattice parameters $a_{0}=7.26 \AA(\mathrm{C} 15)$ and $a_{0}=5.15 \AA, c_{0}=8.42 \AA$ (C14).

QENS measurements were performed on the high-resolution backscattering spectrometers IN10 (Institut Laue-Langevin, Grenoble) and BSS1 (Forschungszentrum Jülich). Both spectrometers use the $\mathrm{Si}(111)$ monochromator and analysers selecting the neutron wavelength $\lambda=6.271 \AA$. The ranges of energy transfer $\hbar \omega$ in our experiments were $\pm 13.6 \mu \mathrm{eV}$ (IN10) and $\pm 15.2 \mu \mathrm{eV}$ (BSS1), the FWHM energy resolutions being 0.9 and $1.2 \mu \mathrm{eV}$, respectively. The ranges of momentum transfer $\hbar Q$ studied corresponded to Q-ranges of $0.41-1.94 \AA^{-1}$ (IN10) and 0.16-1.88 \AA^{-1} (BSS1).

The powdered $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ samples were placed into flat Al containers with a depth of 1 mm . In the experiments on both spectrometers the plane of the container was oriented along the direction $2 \theta \approx 97^{\circ}$. This direction corresponds to the only Bragg reflection (in the Q-range studied) for the C 15 sample and to one of three low- Q Bragg reflections for the C 14 sample. In order to avoid Bragg reflections, the analyser plate surfaces were partially shielded by cadmium. For $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ the QENS spectra were recorded using both IN10 (at the temperatures $10,140,150,160,170,215,239,264$ and 293 K) and BSS1 (14, 130, 200, 230, 260, 300 and 340 K). The $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ sample was studied only on IN10 at the temperatures 10,128 , $140,155,173,210,234,259,279$ and 303 K . The raw experimental data were corrected for absorption and self-shielding using the standard ILL programs. The value of the transmission coefficient measured for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ at room temperature was 0.93 ± 0.02.

For both spectrometers the instrumental resolution functions were determined from the QENS spectra of $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ at low temperatures (10 K for IN 10 and 14 K for BSS1). The background spectra were measured for the identical outgassed $\mathrm{C} 15-\mathrm{ZrCr}_{2}$ sample at 293 K in the same experimental geometry as for $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$. The scattering function $S_{\exp }(Q, \omega)$ of the
hydrogen sublattice was determined by subtracting these background spectra from the $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ spectra.

3. Results and discussion

3.1. QENS spectra: an overview

The experimental QENS spectra for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ show qualitatively similar behaviour over the temperature range studied. Between 128 and 173 K the spectra can be satisfactorily described by a sum of two components: a narrow 'elastic' line represented by the spectrometer resolution function $R(Q, \omega)$ and a resolution-broadened Lorentzian 'quasielastic' line. As an example of the data, figure 1 shows the QENS spectrum of $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ recorded at 170 K for $Q=1.94 \AA$. As the first step of the analysis, we have fitted $S_{\exp }(Q, \omega)$ with the model incoherent scattering function

$$
\begin{equation*}
S_{\mathrm{inc}}(Q, \omega)=A_{0}(Q) \delta(\omega)+\left[1-A_{0}(Q)\right] L(\omega, \Gamma) \tag{1}
\end{equation*}
$$

convoluted with $R(Q, \omega)$. Here $\delta(\omega)$ is the 'elastic' δ-function, $L(\omega, \Gamma)$ is the 'quasielastic' Lorentzian with the half-width Γ and $A_{0}(Q)$ is the elastic incoherent structure factor (EISF). The relative intensity of the 'quasielastic' component is found to increase with increasing Q, its half-width Γ being nearly Q-independent. These features are typical of the case of spatially confined (localized) motion [15]. The value of Γ is proportional to the hydrogen hopping rate τ_{l}^{-1}, and $A_{0}(Q)$ contains information on the geometry of localized motion [15]. Thus, our measurements have revealed the existence of a localized H motion in both C15- and C14-type $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ with the characteristic hopping rates being within the frequency 'window' of the backscattering spectrometers for $128 \mathrm{~K} \leqslant T \leqslant 173 \mathrm{~K}$.

Figure 1. The quasielastic neutron scattering spectrum for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ measured on IN10 at 170 K and $Q=1.94 \AA^{-1}$. The solid curve shows the fit of the two-component model to the data. The dotted curve represents the spectrometer resolution function (the 'elastic' component), and the dashed curve shows the Lorentzian 'quasielastic' component.

Above 200 K the effects of the long-range H diffusion become observable. In this temperature range the hopping rate of the localized H motion is higher than the frequency 'window' of the backscattering spectrometers; therefore, instead of the low-temperature 'quasielastic' curve we observe a flat background. As expected, this background is Q dependent, increasing with increasing Q. On the other hand, the low-temperature 'elastic'
curve shows a pronounced broadening above 200 K . In this range the QENS spectra can be reasonably described by a sum of a flat background and a single Lorentzian convoluted with the instrumental resolution function. The observed Q-dependence of the half-width Γ_{0} of this Lorentzian is typical of the case of jump diffusion [15]. For parametrization of the $\Gamma_{0}(Q)$ dependence we have used the orientationally averaged Chudley-Elliott model [16] describing the diffusion with the constant jump length L and with random distribution of jump directions. The values of Γ_{0} are found to increase with increasing temperature. Above room temperature the fitting of the QENS spectra at high Q becomes problematic, since the corresponding values of Γ_{0} are comparable to the energy-transfer 'window' of the backscattering spectrometers.

Thus the extremely high hydrogen mobility in ZrCr_{2} allows us to probe both the localized H motion and the long-range H diffusion below room temperature. In the following sections we shall discuss the parameters of these two types of H motion.

3.2. Localized hydrogen motion

As noted above, in the temperature range 128-173 K the observed QENS spectra for both C15- and C14-type compounds can be satisfactorily described in terms of equation (1) with a nearly Q-independent half-width Γ. In order to assess Γ and $A_{0}(Q)$ at each temperature, we have used a simultaneous fit of $S_{\mathrm{inc}}(Q, \omega)$ to the data at all Q with a common value of Γ.

Figure 2. The temperature dependence of the half-width (HWHM) of the 'quasielastic' curve for $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ and $\mathrm{C} 15-$ $\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$, as measured on IN 10 and BSS1.

Figure 3. The elastic incoherent structure factor for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ as a function of Q at $T=130,150$ and 160 K . The solid curves represent the fits of the six-site model (equation (2)) with fixed $r=1.13 \AA$ to the data.

The temperature dependence of the fitted quasielastic half-width Γ for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ is shown in figure 2. It can be seen that the half-width tends to increase with increasing temperature, the values of Γ for the C15-type compound being somewhat higher than the corresponding values for the C14-type compound. Figures 3 and 4 show the behaviour of the elastic incoherent structure factor $A_{0}(Q)$ at a number of temperatures for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$, respectively. The measured EISF appears to be temperature dependent, decreasing with increasing T. A similar feature has been found for the EISF in $\mathrm{TaV}_{2} \mathrm{H}_{x}$ [7-9]. In order to account for this feature, we have to assume that only a fraction p of the H atoms participates in the fast localized motion, and this fraction increases with temperature. The fraction $1-p$ of the 'static' protons (on the frequency scale determined by the spectrometer resolution) contributes only to the 'elastic' curve and makes the observed values of $A_{0}(Q)$ higher than those expected in the case of $p=1$. The existence of 'static' protons may result from the $\mathrm{H}-\mathrm{H}$ interaction leading to the formation of some ordered atomic configurations at low temperatures. In fact, neutron diffraction measurements [12,17] have revealed the longrange ordering of D in $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{D}_{x}$ with x as low as 0.7 at $T<100 \mathrm{~K}$. The heat capacity data for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{x}\left(\mathrm{C}_{1}-\mathrm{ZrCr}_{2} \mathrm{D}_{x}\right)$ with $0.45 \leqslant x \leqslant 0.50$ [18] are also consistent with the $\mathrm{H}(\mathrm{D})$ ordering near 70 K . At higher temperatures a short-range order is likely to exist. With increasing T it tends to disappear, resulting in the observed growth of the fraction p.

Figure 4. The elastic incoherent structure factor for $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ as a function of Q at $T=140$ and 155 K . The solid curves represent the fits of the six-site model (equation (2)) with fixed $r=1.16 \AA$ to the data.

In order to elucidate the geometry of the localized motion, we have to consider the spatial arrangement of the interstitial sites occupied by hydrogen in C15- and C14-type ZrCr_{2}. The structure of the network of interstitial g sites in the C15 lattice has been discussed in detail in our previous papers (see, e.g., figures 5 and 6 of reference [9]). The sublattice of g sites consists of hexagons, the distance r_{1} between the nearest sites within the hexagon being shorter than the distance r_{2} between the nearest sites on different hexagons. A hydrogen atom moving on such a sublattice is expected to perform many jumps within a hexagon before jumping to the other hexagon. The exact values of r_{1} and r_{2} depend on the positional parameters of hydrogen atoms at g sites. Using the experimental positional parameters of D atoms at g sites in $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{D}_{0.7}\left(X=0.066, Z=0.872\right.$) [17] to calculate $\mathrm{g}-\mathrm{g}$ distances in $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$, we obtain $r_{1}=1.13 \AA, r_{2}=1.21 \AA$.

Let us check now whether the localized motion of H atoms on the g -site hexagons is consistent with the observed Q-dependence of the EISF. In the case where $p \neq 1$, the elastic incoherent structure factor for the model of hopping between six sites on a circle of radius
r [15] is given by

$$
\begin{equation*}
A_{0}(Q, T)=1-p(T)+\frac{1}{6} p(T)\left[1+2 J_{0}(Q r)+2 J_{0}(Q r \sqrt{3})+J_{0}(2 Q r)\right] \tag{2}
\end{equation*}
$$

where $J_{0}(x)$ is the Bessel function of zeroth order. The fit of equation (2) to the $A_{0}(Q)$ data for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ at 160 K yields $p=0.66 \pm 0.04, r=1.07 \pm 0.06 \AA$. The fitted value of r is close to the value $r=r_{1}=1.13 \AA$ resulting from the structure. By fixing the value of r to $1.13 \AA$, we have found reasonable fits of the six-site model (equation (2)) to the data at all temperatures in the range $130-170 \mathrm{~K}$ with p as the only fit parameter. The results of these fits are shown as solid curves in figure 3. The temperature dependence of p resulting from these fits is shown in figure 5.

Figure 5. The temperature dependence of the fraction of protons participating in the fast localized motion, as determined from the fits of the six-site model to the data for $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ and $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$.

A more rigorous approach to the data analysis implies a simultaneous fit of $S_{\text {inc }}(Q, \omega)$ for the six-site model with fixed $r=1.13 \AA$ to the spectra at all Q. Taking into account that only a fraction p of protons participates in the fast localized motion, $S_{\mathrm{inc}}(Q, \omega)$ for the six-site model [15] can be written in the form

$$
\begin{equation*}
S_{\mathrm{inc}}(Q, \omega)=A_{0}(Q) \delta(\omega)+p \sum_{i=1}^{3} A_{i}(Q) L\left(\omega, \Gamma_{i}\right) \tag{3}
\end{equation*}
$$

where $A_{0}(Q)$ is given by equation (2), L(ω, Γ_{i}) is the Lorentzian function with the halfwidth $\Gamma_{i}, \Gamma_{1}=0.5 \tau_{l}^{-1}, \Gamma_{2}=1.5 \tau_{l}^{-1}, \Gamma_{3}=2 \tau_{l}^{-1}$ and τ_{l} is the mean time between two successive jumps of a proton within a hexagon. Thus, for the six-site model the quasielastic curve is expected to consist of three Lorentzian components with different half-widths Γ_{i} and Q-dependent amplitudes $A_{i}(Q)$, and the half-width of the composite quasielastic curve should show a certain Q-dependence, especially at $Q r \geqslant 1.5$ [15]. However, as has been noted previously [19], because of the limited experimental accuracy it is difficult to distinguish between such a three-component quasielastic curve and a single Lorentzian with a Q-independent width in the case of a rather weak quasielastic curve coexisting with a strong elastic one. In fact, we have found that the quality of simultaneous fits based on equation (3) with the fit parameters τ_{l}^{-1} and p is comparable to the quality of simultaneous fits based on equations (1) and (2) with a common Γ. Moreover, the values of p obtained from these two types of fit are nearly the same, and the common Γ-value appears to be close to $0.6 \tau_{l}^{-1}$.

The spatial arrangement of the tetrahedral $\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ sites in $\mathrm{C} 14-\mathrm{ZrCr}_{2}$ is shown in figure 6. As in the case of the C 15 structure, the sublattice of $\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ sites consists of hexagons; however, these hexagons are formed by inequivalent sites. Type I hexagons are in the basal plane; they are formed by alternating h_{1} and h_{2} sites. Type II hexagons are formed by two k and

Figure 6. The spatial arrangement of interstitial $\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ sites in C14-type ZrCr_{2} (from [14]). Large triangles: h_{1} sites; small triangles: h_{2} sites; squares: k sites; solid circles: 1 sites; large open circles: Zr atoms.
four 1 sites in the sequence $k-1-1-k-1-1$. In order to calculate the intersite distances, we have used the actual lattice parameters a_{0} and c_{0} of $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ and the positional parameters of D atoms in $\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{k}$ and 1 sites found for the related compound $\mathrm{ZrMn}_{2} \mathrm{D}_{3}$ [14]. The following distances between the nearest neighbours have been obtained:
(a) $\mathrm{h}_{1}-\mathrm{h}_{2}$ (within type I hexagons): $r_{3}=1.16 \AA$;
(b) $1-1$ (within type II hexagons): $r_{4}=1.11 \AA$;
(c) k-1 (within type II hexagons): $r_{5}=1.19 \AA$;
(d) $\mathrm{h}_{1}-\mathrm{k}$ (between type I and type II hexagons): $r_{6}=1.23 \AA$;
(e) $1-1$ (between two type II hexagons): $r_{7}=1.24 \AA$.

Since the distances between the nearest sites within the hexagons $\left(r_{3}, r_{4}, r_{5}\right)$ are shorter than the distances between the nearest sites on different hexagons (r_{6}, r_{7}), we may again expect that the localized H motion occurs within the hexagons.

If we neglect the small difference between type I and type II hexagons, the Q-dependence of the EISF can still be described in terms of equation (2). The fit of equation (2) to the $A_{0}(Q)$ data for $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ at 155 K yields $p=0.41 \pm 0.03, r=1.15 \pm 0.07 \AA$. Again, the fitted value of r is close to the weighted average of r_{3}, r_{4} and $r_{5}, \bar{r}=1.16 \AA$. By fixing the value of r to $1.16 \AA$, we have found reasonable fits of the six-site model (equation (2)) to the data at all temperatures in the range $128-173 \mathrm{~K}$ with p as the only fit parameter. The results of these fits are shown as solid curves in figure 4. The temperature dependence of p resulting from these fits is included in figure 5. Comparison of the $p(T)$ results for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ shows that for the same temperature the fraction of H atoms participating in the fast localized motion in the C14-type compound is considerably lower than for the C15 counterpart. It should be noted, however, that the apparent p-value for the C14 compound can be affected by the difference between intersite distances r_{4} and r_{5} within type II hexagons. In fact, this difference is expected to lead to a difference between H residence times in k and 1 sites forming type II hexagons. Such an asymmetry results in an increase in $A_{0}(Q)$ with respect to
that for the symmetric case [15]; as has been discussed in [7], it is practically impossible to distinguish this $A_{0}(Q)$ increase from that caused by a decrease in p.

The usual approach to the description of $p(T)$ is based on the assumption of a certain energy gap ΔE between 'static' and 'mobile' H states (see, e.g., [20]). In this case,

$$
\begin{equation*}
p(T)=\frac{b_{m} \exp \left(-\Delta E / k_{B} T\right)}{1+b_{m} \exp \left(-\Delta E / k_{B} T\right)} \tag{4}
\end{equation*}
$$

where b_{m} is the relative degeneracy factor of 'mobile' states. However, even in a rather narrow temperature range of the available $p(T)$ data we have not been able to get a satisfactory description of the experimental results using equation (4). As in the case of $\mathrm{TaV}_{2} \mathrm{H}_{x}$ [9], this may indicate the existence of a broad ΔE distribution resulting from a spread in local H configurations.

3.3. Long-range diffusion of hydrogen

As noted in section 3.1, above 200 K the experimental QENS spectra for both C15- and C14-type compounds can be satisfactorily described by a sum of a flat background and a single Lorentzian convoluted with the instrumental resolution function. The Q-dependence of the half-width Γ_{0} of this Lorentzian is typical of the case of jump diffusion. At low Q

Figure 7. The half-width (HWHM) of the diffusion-broadened Lorentzian quasielastic curve as a function of Q^{2} in the low- Q range for $T=260,300$ and 340 K . The solid lines show the fits of equation (5) to the data.

Figure 8. The temperature dependence of the tracer diffusion coefficient of hydrogen in $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$, as determined from the low- Q data (equation (5)) and from the Chudley-Elliott fits. The solid line shows the Arrhenius fit of the D-values derived from the low- Q data for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$.
(corresponding to $Q L \ll 1$) the value of Γ_{0} is expected to be proportional to Q^{2} [15]:

$$
\begin{equation*}
\Gamma_{0}=\hbar D Q^{2} \tag{5}
\end{equation*}
$$

where D is the tracer diffusion coefficient for hydrogen. The low- Q range has been studied only for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ in the measurements on BSS1. Figure 7 shows the observed behaviour of Γ_{0} as a function of Q^{2} for three temperatures. Below 260 K the line broadening at low Q is too small to be reliably determined with the available instrumental resolution. As can be seen from figure 7 , in the range $260-340 \mathrm{~K}$ the Q-dependence of Γ_{0} at low Q is reasonably well described by equation (5). The values of the diffusion coefficient resulting from the corresponding fits are shown by open circles in figure 8 . These model-independent values appear to be about a factor of 2 higher than those obtained from the pulsed-field-gradient (PFG) NMR measurements [3] for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$. However, the activation energy E_{a}^{D} for H diffusion found from our D-data over the range $260-340 \mathrm{~K}(136 \pm 5 \mathrm{meV})$ is in excellent agreement with that derived from the PFG-NMR results [3] above $200 \mathrm{~K}(137 \mathrm{meV})$.

Examples of the dependence $\Gamma_{0}(Q)$ over the entire Q-range studied are shown in figures 9 and 10. For parametrization of this dependence we have used the orientationally averaged Chudley-Elliott model [16]. The corresponding form of $\Gamma_{0}(Q)$ is

$$
\begin{equation*}
\Gamma_{0}(Q)=\frac{\hbar}{\tau_{d}}\left(1-\frac{\sin Q L}{Q L}\right) \tag{6}
\end{equation*}
$$

Figure 9. The half-width of the Lorentzian QENS component for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ as a function of Q at $T=230,260$ and 293 K . The solid curves show the fits of the ChudleyElliott model (equation (6)) to the data.

Figure 10. The half-width of the Lorentzian QENS component for $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ as a function of Q at $T=234,259$ and 279 K . The solid curves show the fits of the ChudleyElliott model (equation (6)) to the data.

Figure 11. The temperature dependence of the hydrogen hopping rate τ_{d}^{-1} derived from the Chudley-Elliott fits (equation (6)). The solid line shows the Arrhenius fit to the data for $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$. The dashed line represents the Arrhenius fit to the IN10 data for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$.
where τ_{d} is the mean time between two successive H jumps leading to long-range diffusion. The fits of equation (6) to the data are shown by the solid curves in figures 9 and 10. The temperature dependences of τ_{d}^{-1} resulting from the Chudley-Elliott fits for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ are presented in figure 11. As can be seen from this figure, for both $\mathrm{C} 15-$ and C14-type compounds the behaviour of τ_{d}^{-1} is reasonably well described by the Arrhenius law:

$$
\begin{equation*}
\tau_{d}^{-1}=\tau_{d 0}^{-1} \exp \left(-E_{a}^{\tau} / k_{B} T\right) \tag{7}
\end{equation*}
$$

There is a small difference between the τ_{d}^{-1}-values for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ resulting from the measurements on IN10 and BSS1; only the Arrhenius fit for the IN10 data is shown in figure 11. The fitted values of $\tau_{d 0}^{-1}$ are $(7.5 \pm 1.0) \times 10^{10} \mathrm{~s}^{-1}$ and $(1.6 \pm 0.1) \times 10^{11} \mathrm{~s}^{-1}$ for the C 15 - and C14-type compounds, respectively. The activation energies E_{a}^{τ} resulting from the Arrhenius fits are $73 \pm 3 \mathrm{meV}$ (C15) and $93 \pm 2 \mathrm{meV}$ (C14). For $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ the values of $\tau_{d 0}^{-1}$ and E_{a}^{τ} can be compared to those derived from the NMR measurements of the proton spin-lattice relaxation rate in $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ [2], $\tau_{d 0}^{-1}=5.5 \times 10^{10} \mathrm{~s}^{-1}$, and the average activation energy $\bar{E}_{a}=84 \mathrm{meV}$. The agreement between the QENS and the NMR relaxation results for τ_{d}^{-1} appears to be satisfactory. It should be noted, however, that the activation energy E_{a}^{τ} describing the temperature dependence of τ_{d}^{-1} is considerably lower than the activation energy E_{a}^{D} for the tracer diffusion coefficient D. We shall return to the discussion of this unusual feature below.

The values of the effective jump length L resulting from the Chudley-Elliott fits show systematic increase with increasing temperature. For $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ the fitted L-value is found to change from $1.92 \pm 0.06 \AA$ at 200 K to $2.6 \pm 0.1 \AA$ at 293 K ; for $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ it grows from $1.97 \pm 0.07 \AA$ at 210 K to $2.62 \pm 0.09 \AA$ at 303 K . Note that the effective jump length is always considerably longer than the distance between the nearest $\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ sites on different hexagons ($r_{2}=1.21 \AA$ for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $r_{6}=1.23 \AA, r_{7}=1.24 \AA$ for $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$). The values of L exceeding $2 \AA$ have also been reported previously for a number of cubic Laves phase hydrides with g-site occupation [3, 9, 21, 22]. This feature can be naturally explained in terms of our model implying two frequency scales of H motion: the rate of hopping within hexagons $\left(\tau_{l}^{-1}\right)$ and the rate of hopping between hexagons $\left(\tau_{d}^{-1}\right)$ with $\tau_{d}^{-1} \ll \tau_{l}^{-1}$. In this model, τ_{d} is the mean residence time of a hydrogen atom at a hexagon (not at an interstitial site, as usually). Since a H atom may enter a hexagon through one site and leave it from the other site, the total displacement for the time τ_{d} is the distance between the nearest sites on different hexagons plus the additional displacement between the initial and the final positions of a hydrogen atom at the hexagon. Both the half-width Γ_{0} and the
maximum of the spin-lattice relaxation rate in NMR experiments are determined by the slower frequency scale τ_{d}^{-1}; therefore the apparent jump length L derived from these measurements is considerably longer than the distance between the nearest $\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ sites on different hexagons.

The observed growth of L with increasing temperature may be related to increasing fraction of H atoms participating in the fast localized motion. In fact, if a hydrogen does not participate in the localized motion on the timescale of τ_{l}, its displacement for time τ_{d} is expected to be shorter than that of H atoms participating in the localized motion. Therefore the increase in p leads to the shift of the distribution of individual displacements for time τ_{d} to higher values; this results in the growth of the effective L-value.

The relation between the tracer diffusion coefficient D and the values of τ_{d} and L is given by

$$
\begin{equation*}
D=\frac{L^{2}}{6 \tau_{d}} \tag{8}
\end{equation*}
$$

We assume here that the tracer correlation factor [23] for H diffusion is equal to 1 . This assumption is well justified, since in our $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ samples less than 5% of all available tetrahedral sites are occupied by hydrogen. Using the values of τ_{d} and L derived from the Chudley-Elliott fits, we can obtain D from equation (8). The resulting D-values are included in figure 8 . Note that for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ the three sets of D-values (determined from the lowQ data and from the Chudley-Elliott fits of the BSS1 and IN10 data) are in good agreement. At $T \geqslant 215 \mathrm{~K}$ all of these data sets can be characterized by the activation energies E_{a}^{D} over the range $125-140 \mathrm{meV}$, in agreement with the $\mathrm{PFG}-\mathrm{NMR}$ results [3]. As noted above, these E_{a}^{D}-values are considerably higher than the activation energy E_{a}^{τ} for τ_{d} derived from the proton spin-lattice relaxation rate [2] and from the present QENS measurements ($70-85 \mathrm{meV}$ for the C15-type compound). The origin of this difference can be understood, if we take into account the observed temperature dependence of L. Since the effective jump length is found to increase with increasing temperature, it follows from equation (8) that D grows with temperature faster than τ_{d}^{-1}, at least in the range where L is temperature dependent. This feature results from the specific mechanism of H diffusion in Laves phase compounds implying two frequency scales of hydrogen hopping and the temperature-dependent fraction of H atoms participating in the faster motion.

As can be seen from figure 8 , the temperature dependence of D over the range $200-340 \mathrm{~K}$ shows a small deviation from the Arrhenius behaviour. Much stronger deviations from the Arrhenius behaviour of D below 200 K were observed in the PFG-NMR experiments for both C14- and C15-type $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ [3]. Although temperature dependence of L can contribute to the observed deviations, the changes in the slope of Arrhenius plots of D found by PFG-NMR [3] are too strong to be attributed solely to changes in L. This means that a change in the physical mechanism of elementary H jumps is likely to occur in $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ below 200 K .

3.4. Comparison with the results for C15-type $\mathrm{TaV}_{2} \mathrm{H}_{x}$

In order to discuss the systematics of H motion in cubic Laves phase compounds, it is useful to compare the QENS results for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ with those for $\mathrm{C} 15-\mathrm{TaV}_{2} \mathrm{H}_{x}$ [9]. The microscopic picture of hydrogen diffusion in $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ appears to be qualitatively the same as for $\mathrm{C} 15-\mathrm{TaV}_{2} \mathrm{H}_{x}$. However, there is a substantial difference between the motional parameters of hydrogen in these compounds. The localized H motion in ZrCr_{2} is slower, whereas the long-range diffusion is much faster than in TaV_{2}. Therefore the two frequency scales of H motion in ZrCr_{2} are much closer to each other than in TaV_{2}.

It has been suggested [9] that in cubic Laves phases the hydrogen hopping rates τ_{l}^{-1} and τ_{d}^{-1} strongly depend on the distances r_{1} and r_{2}, respectively (the decrease in the distances
leads to the increase in the corresponding hopping rates). In its turn, the ratio r_{2} / r_{1} is believed to be determined by the ratio of metallic radii $R_{\mathrm{A}} / R_{\mathrm{B}}$ of the elements A and B forming the AB_{2} intermetallic [9]. Table 1 shows the values of $R_{\mathrm{A}} / R_{\mathrm{B}}$, the structural parameters and the parameters of hydrogen motion in C15-type $\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{TaV}_{2} \mathrm{H}_{0.6}$. The positional parameters of hydrogen at g sites, X and Z, in ZrCr_{2} and TaV_{2} are determined from the neutron diffraction measurements on $\mathrm{ZrCr}_{2} \mathrm{D}_{0.7}$ [17] and $\mathrm{TaV}_{2} \mathrm{D}_{x}$ [24], respectively; the $\mathrm{g}-\mathrm{g}$ distances r_{1} and r_{2} are calculated using these positional parameters. The values of $\tau_{l}^{-1}(140 \mathrm{~K})$, $\tau_{d}^{-1}(320 \mathrm{~K})$ and $D(320 \mathrm{~K})$ for $\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ are the results from the present work, and the value of $\tau_{l}^{-1}(140 \mathrm{~K})$ for $\mathrm{TaV}_{2} \mathrm{H}_{0.6}$ is taken from reference [9]. Since for the $\mathrm{TaV}_{2} \mathrm{H}_{x}$ system QENS measurements probing the long-range diffusion have been performed only on the sample with $x=1.1$ [9], the actual values of $\tau_{d}^{-1}(320 \mathrm{~K})$ and $D(320 \mathrm{~K})$ included in table 1 relate to $\mathrm{TaV}_{2} \mathrm{H}_{1.1}$. From the NMR experiments [5] it is known that in $\mathrm{TaV}_{2} \mathrm{H}_{x}$ the value of τ_{d}^{-1} slowly increases with increasing x.

Table 1. The ratio of metallic radii of the elements A and B forming the $A B_{2}$ intermetallic, the structural parameters and the parameters of H motion in C 15 -type $\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{TaV}_{2} \mathrm{H}_{0.6}$.

Parameter	$\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$	$\mathrm{TaV}_{2} \mathrm{H}_{0.6}$
$R_{\mathrm{A}} / R_{\mathrm{B}}$	1.250	1.090
X	0.066	0.055
Z	0.872	0.888
$a_{0}(\AA)$	7.26	7.22
$r_{1}(\AA)$	1.13	0.99
$r_{2}(\AA)$	1.21	1.44
r_{2} / r_{1}	1.07	1.45
$\tau_{l}^{-1}(140 \mathrm{~K})\left(\mathrm{s}^{-1}\right)$	3.2×10^{8}	6.5×10^{9}
$\tau_{d}^{-1}(320 \mathrm{~K})\left(\mathrm{s}^{-1}\right)$	4.2×10^{9}	2.2×10^{8}
$D(320 \mathrm{~K})\left(\mathrm{cm}^{2} \mathrm{~s}^{-1}\right)$	8.6×10^{-7}	3.8×10^{-8}

Although the lattice parameters a_{0} of $\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{TaV}_{2} \mathrm{H}_{0.6}$ are close to each other, there is a considerable difference between the $\mathrm{g}-\mathrm{g}$ distances in these compounds. As can be seen from table 1 , for $\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ the r_{1}-value is longer and the r_{2}-value is shorter than in $\mathrm{TaV}_{2} \mathrm{H}_{0.6}$. The difference is especially pronounced for the ratio r_{2} / r_{1}. The structural data presented in table 1 indicate the possibility of large variations of this ratio characterizing the sublattice of g sites in cubic Laves phases. This means that, depending on positional parameters X and Z in different Laves phases, the g-site hexagons may be well or poorly separated from each other. It is known that for many intermetallic hydrides the hydrogen-metal distances are nearly the same as in the corresponding metal hydrides [12,13]. Therefore one may expect the positional parameters of hydrogen in interstitial sites formed by different metal atoms ($\mathrm{A}_{2} \mathrm{~B}_{2}$ in the case of g sites) to depend on $R_{\mathrm{A}} / R_{\mathrm{B}}$. The 'ideal' value of $R_{\mathrm{A}} / R_{\mathrm{B}}$ for Laves phase compounds (corresponding to the closest packing of hard spheres) is 1.225 , the resulting 'ideal' values of the positional parameters of hydrogen, $X_{i d}$ and $Z_{i d}$, being equal to 0.063 and 0.875 , respectively. It can be seen from table 1 that for the $\mathrm{ZrCr}_{2}-\mathrm{H}$ system both $R_{\mathrm{A}} / R_{\mathrm{B}}$ and the positional parameters of hydrogen are close to the corresponding 'ideal' values, whereas for $\mathrm{TaV}_{2}-\mathrm{H}$ there are strong deviations of both $R_{\mathrm{A}} / R_{\mathrm{B}}$ and the positional parameters X and Z from their 'ideal' values. In general, we expect that the highest r_{2} / r_{1} ratio should be found in Laves phases with the lowest $R_{\mathrm{A}} / R_{\mathrm{B}}$. The difference between r_{1} and r_{2} is expected to disappear with increasing $R_{\mathrm{A}} / R_{\mathrm{B}}$.

Comparison of the hydrogen hopping rates presented in table 1 shows that for $\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ the value of $\tau_{l}^{-1}(140 \mathrm{~K})$ is considerably lower and the value of $\tau_{d}^{-1}(320 \mathrm{~K})$ is higher than the
corresponding values for $\mathrm{TaV}_{2} \mathrm{H}_{0.6}$. The smaller difference between the two frequency scales of H motion in ZrCr_{2} is consistent with the smaller r_{2} / r_{1} ratio. NMR measurements of the proton spin-lattice relaxation rate T_{1}^{-1} in $\mathrm{TaV}_{2} \mathrm{H}_{x}$ [5] have revealed two maxima in $T_{1}^{-1}(T)$. The main high-temperature maximum ($290-360 \mathrm{~K}$) is determined by the condition $\omega_{\mathrm{H}} \tau_{d} \approx 1$, and the low-temperature maximum corresponds to $\omega_{\mathrm{H}} \tau_{l} \approx 1$, where ω_{H} is the nuclear magnetic resonance frequency for protons. For $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ the additional low-temperature maximum of the spin-lattice relaxation rate is not observed [2] because of the smaller difference between the two frequency scales of H motion. However, the localized H motion in $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ contributes to the change in the low-temperature slope of the dependence $T_{1}^{-1}(T)$ and to the reduction of the amplitude of the maximum in $T_{1}^{-1}(T)$ [2]. In fact, the maximum T_{1}^{-1}-value is determined by the mean square strength $\left\langle M^{2}\right\rangle$ of the fluctuating internuclear dipole-dipole interaction [25], but at the temperature of the relaxation rate maximum, $T_{\max }$, a certain part of $\left\langle M^{2}\right\rangle$ appears to be averaged out by the fast localized H motion. This part should be proportional to $p\left(T_{\max }\right)$. Since p increases with temperature, one may expect that the reduction of the relaxation rate maximum is stronger for higher $T_{\max }$-values. This is consistent with the results of recent NMR measurements [26] of the rotating-frame spin-relaxation rate $T_{1 \rho}^{-1}$ in $\mathrm{ZrCr}_{2} \mathrm{H}_{x}(0.2 \leqslant x \leqslant 0.5)$. The $T_{\max }$-values for $T_{1 \rho}^{-1}$ are much lower than for T_{1}^{-1}, since the $T_{1 \rho}^{-1}$-maximum is determined by the condition $\omega_{1} \tau_{d} \approx 1$, where the nutation frequency ω_{1} is at least two orders of magnitude lower than the resonance frequency ω_{H}. It has been found [26] that the maximum values of $T_{1 \rho}^{-1}$ in $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$ are higher than those expected on the basis of the T_{1}^{-1}-data in the same samples. This can be qualitatively explained in terms of the temperature-dependent fraction p : because of the increase in p with increasing temperature, the localized H motion leads to a slight reduction of the $T_{1 \rho}^{-1}$-maximum and to a stronger reduction of the T_{1}^{-1}-maximum.

4. Conclusions

The analysis of our quasielastic neutron scattering data for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ and $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$ has shown that in both systems the diffusive motion of hydrogen can be described in terms of at least two jump processes with different frequency scales. The faster process implies H jumps within the hexagons formed by interstitial $\left(\mathrm{Zr}_{2} \mathrm{Cr}_{2}\right)$ sites; this localized motion is characterized by the hopping rate τ_{l}^{-1}. The slower process with the hopping rate τ_{d}^{-1} corresponds to jumps from one hexagon to the other. It is found that only a fraction p of H atoms participates in the fast localized motion, and this fraction increases with temperature. The motional parameters of hydrogen in the C15- and C14-type samples are found to be close to each other, the values of τ_{l}^{-1} and τ_{d}^{-1} for $\mathrm{C} 15-\mathrm{ZrCr}_{2} \mathrm{H}_{0.45}$ being slightly higher than the corresponding values for $\mathrm{C} 14-\mathrm{ZrCr}_{2} \mathrm{H}_{0.5}$.

The hydrogen diffusion coefficients D obtained from the low- Q QENS data and from the Chudley-Elliott model in the range $200-340 \mathrm{~K}$ can be reasonably described by the Arrhenius law with the activation energy $E_{a}^{D} \approx 0.13 \mathrm{eV}$. However, this value appears to be considerably higher than the activation energy $E_{a}^{\tau}\left(\sim 0.07 \mathrm{eV}\right.$ for the C15-type sample) describing $\tau_{d}^{-1}(T)$ over the same temperature range. The inequality $E_{a}^{\tau}<E_{a}^{D}$ as well as the high values of the apparent jump length of H atoms are shown to result from the specific microscopic picture of hydrogen diffusion implying two frequency scales of H hopping and the temperature-dependent fraction of atoms participating in the faster motion.

Comparison of the motional parameters of hydrogen in the cubic Laves phases ZrCr_{2} and TaV_{2} shows that the localized H motion in ZrCr_{2} is slower, whereas the long-range H diffusion is much faster than in TaV_{2}. Therefore, the two frequency scales of H motion in ZrCr_{2} are much closer to each other than in TaV_{2}. This is consistent with the small difference between
the intersite $\mathrm{g}-\mathrm{g}$ distances r_{1} and r_{2} in $\mathrm{ZrCr}_{2} \mathrm{H}_{x}$. Our results also support the idea [9] that the ratio r_{2} / r_{1} is related to the ratio $R_{\mathrm{A}} / R_{\mathrm{B}}$ of metallic radii of the elements forming a cubic Laves phase AB_{2}. In order to verify the relation between the H hopping rates, the $\mathrm{g}-\mathrm{g}$ distances and $R_{\mathrm{A}} / R_{\mathrm{B}}$, it is necessary to determine both the positional parameters of hydrogen at g sites and the hopping rates τ_{l}^{-1} and τ_{d}^{-1} in a number of Laves phases with different values of $R_{\mathrm{A}} / R_{\mathrm{B}}$. Such a study is in progress now.

Acknowledgments

This work was partially supported by the Russian Foundation for Basic Research (grant 96-02-16517). AVS acknowledges financial support of the Alexander von Humboldt Foundation and Universität des Saarlandes.

References

[1] Skripov A V, Belyaev M Yu and Stepanov A P 1991 Solid State Commun. 78909
[2] Skripov A V and Belyaev M Yu 1993 J. Phys.: Condens. Matter 54767
[3] Renz W, Majer G, Skripov A V and Seeger A 1994 J. Phys.: Condens. Matter 66367
[4] Bowman R C, Craft B D, Attalla A and Johnson J R 1983 Int. J. Hydrogen Energy 8801
[5] Skripov A V, Rychkova S V, Belyaev M Yu and Stepanov A P 1990 J. Phys.: Condens. Matter 27195
[6] Skripov A V, Belyaev M Yu, Rychkova S V and Stepanov A P 1991 J. Phys.: Condens. Matter 36277
[7] Skripov A V, Cook J C, Karmonik C and Hempelmann R 1996 J. Phys.: Condens. Matter 8 L319
[8] Skripov A V, Cook J C, Karmonik C and Hempelmann R 1997 J. Alloys Compounds 253+254 432
[9] Skripov A V, Cook J C, Sibirtsev D S, Karmonik C and Hempelmann R 1998 J. Phys.: Condens. Matter 10 1787
[10] Fruchart D, Rousault A, Shoemaker C B and Shoemaker D P 1980 J. Less-Common Met. 73363
[11] Yartys V A, Burnasheva V V, Fadeeva N V, Solov'ev S P and Semenenko K N 1980 Dokl. Akad. Nauk SSSR 255582
[12] Somenkov V A and Irodova A V 1984 J. Less-Common Met. 101481
[13] Yvon K and Fischer P 1988 Hydrogen in Intermetallic Compounds I ed L Schlapbach (Berlin: Springer) p 87
[14] Didisheim J J, Yvon K, Shaltiel D and Fischer P 1979 Solid State Commun. 3147
[15] Bée M 1988 Quasielastic Neutron Scattering (Bristol: Hilger)
[16] Chudley C T and Elliott R J 1961 Proc. Phys. Soc. 77353
[17] Fischer P, Fauth F, Skripov A V and Kozhanov V N 1999 to be published
[18] Skripov A V, Karkin A E and Mirmelstein A V 1997 J. Phys.: Condens. Matter 91191
[19] Schönfeld C, Hempelmann R, Richter D, Springer T, Dianoux A J, Rush J J, Udovic T J and Bennington S M 1994 Phys. Rev. B 50853
[20] Berk N F, Rush J J, Udovic T J and Anderson I S 1991 J. Less-Common Met. 172-174 496
[21] Schönfeld C 1992 PhD Thesis Technische Hochschule Aachen
[22] Havill R L, Titman J M, Wright M S and Crouch M A 1989 Z. Phys. Chem., NF 1641083
[23] Tahir-Kheli R A and Elliott R J 1983 Phys. Rev. B 27844
[24] Fischer P, Fauth F, Skripov A V, Podlesnyak A A, Padurets L N, Shilov A L and Ouladdiaf B 1997 J. Alloys Compounds 253+254 282
[25] Barnes R G 1997 Hydrogen in Metals III ed H Wipf (Berlin: Springer) p 93
[26] Stoddard R D and Conradi M S 1998 Phys. Rev. B 5710455

